[No authors listed]
Using immunohistochemistry, we detected the expression of neuronal nitric oxide synthase (nNOS) in ventral medullary gigantocellular reticular nuclei and in the lumbosacral spinal cord 10 days after thoracic transection in experimental rabbits. We tried to determine whether neurons located below the site of injury are protected by the calcium binding protein parvalbumin (PV). Changes of nNOS immunoreactivity (IR) in spinal cord were correlated with the level of nNOS protein in dorsal and ventral horns. Ten days after transection, nNOS was upregulated predominantly in lateral gigantocellular nuclei. In the spinal cord, we revealed a significant increase of nNOS protein in the dorsal horn. This is consistent with a higher density of punctate and fiber-like immunostaining for nNOS in laminae III-IV and the up-regulation of nNOS-IR in neurons of the deep dorsal horn. After surgery, the perikarya of motoneurons remained nNOS immunonegative. Contrary to nNOS, the PV-IR was upregulated in α-motoneurons and small-sized neurons of the ventral horn. However, its expression was considerably reduced in neurons of the deep dorsal horn. The findings indicate that spinal transection affects nNOS and PV in different neuronal circuits.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |