例如:"lncRNA", "apoptosis", "WRKY"

A Pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein.

Mol. Cell. 2011 Oct 7;44(1):108-19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


General discard pathways eliminate unprocessed and irregular pre-mRNAs to control the quality of gene expression. In contrast to such general pre-mRNA decay, we describe here a nuclear pre-mRNA degradation pathway that controls the expression of select intron-containing genes. We show that the fission yeast nuclear poly(A)-binding protein, Pab2, and the nuclear exosome subunit, Rrp6, are the main factors involved in this polyadenylation-dependent pre-mRNA degradation pathway. Transcriptome analysis and intron swapping experiments revealed that inefficient splicing is important to dictate susceptibility to Pab2-dependent pre-mRNA decay. We also show that negative splicing regulation can promote the poor splicing efficiency required for this pre-mRNA decay pathway, and in doing so, we identified a mechanism of cross-regulation between paralogous ribosomal proteins through nuclear pre-mRNA decay. Our findings unveil a layer of regulation in the nucleus in which the turnover of specific pre-mRNAs, besides the turnover of mature mRNAs, is used to control gene expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读