[No authors listed]
The cisternal organelle that resides in the axon initial segment (AIS) of neocortical and hippocampal pyramidal cells is thought to be involved in regulating the Ca(2+) available to maintain AIS scaffolding proteins, thereby preserving normal AIS structure and function. Through immunocytochemistry and correlative light and electron microscopy, we show here that the actin-binding protein α-actinin is present in the typical cistenal organelle of rodent pyramidal neurons as well as in a large structure in the AIS of a subpopulation of layer V pyramidal cells that we have called the "giant saccular organelle." Indeed, this localization of α-actinin in the AIS is dependent on the integrity of the actin cytoskeleton. Moreover, in the cisternal organelle of cultured hippocampal neurons, α-actinin colocalizes extensively with synaptopodin, a protein that interacts with both actin and α-actinin, and they appear concomitantly during the development of these neurons. Together, these results indicate that α-actinin and the actin cytoskeleton are important components of the cisternal organelle that are probably required to stabilize the AIS.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |