例如:"lncRNA", "apoptosis", "WRKY"

The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability.

J. Exp. Bot.2011 Nov;62(15):5683-98. Epub 2011 Aug 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Lipid-derived molecules produced by acylhydrolases play important roles in the regulation of diverse cellular functions in plants. In Arabidopsis, the DAD1-like phospholipase A1 family consists of 12 members, all of which possess a lipase 3 domain. In this study, the biochemical and cellular functions of AtDLAH, an Arabidopsis thaliana DAD1-like acylhydrolase, were examined. Bacterially expressed AtDLAH contained phospholipase A1 activity for catalysing the hydrolysis of phospholipids at the sn-1 position. However, AtDLAH displayed an even stronger preference for 1-lysophosphatidylcholine, 1-monodiacylglycerol, and phosphatidic acid, suggesting that AtDLAH is a sn-1-specific acylhydrolase. The AtDLAH gene was highly expressed in young seedlings, and its encoded protein was exclusively localized to the mitochondria. AtDLAH-overexpressing transgenic seeds (35S:AtDLAH) were markedly tolerant to accelerated-ageing treatment and thus had higher germination percentages than wild-type seeds. In contrast, the atdlah loss-of-function knockout mutant seeds were hypersusceptible to accelerated-ageing conditions. The 35S:AtDLAH seeds, as opposed to the atdlah seeds, exhibited a dark red staining pattern following tetrazolium treatment under both normal and accelerated-ageing conditions, suggesting that AtDLAH expression is positively correlated with seed viability. The enhanced viability of 35S:AtDLAH seeds was accompanied by more densely populated epidermal cells, lower levels of accumulated lipid hydroperoxides, and higher levels of polar lipids as compared with wild-type and atdlah mutant seeds. These results suggest that AtDLAH, a mitochondrial-localized sn-1-specific acylhydrolase, plays an important role in Arabidopsis seed viability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读