[No authors listed]
The circadian clock acts as central coordinator of plant activity, and it regulates key traits for plant fitness such as flowering time, gas exchange, growth, and stress responses. In the May issue of the Proceedings of the National Academy of Science we describe the circadian regulation of gibberellin (GA) signaling, through transcriptional control of GA receptor genes (GID1a and GID1b). We show that, in short day photocycles, the expression of GA receptors oscillates in seedlings, yielding a window of strong GA activity at the end of the night that overlaps with the period of maximum growth. This clock-mediated control of GA signaling is not only crucial for the establishment of rhythmic patterns of growth but also affects the expression of many circadian-controlled genes that participate in a wide range of biological processes. Here we propose a possible mechanism that might operate for the transcriptional control of GID1 expression by the circadian clock.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |