[No authors listed]
The primitive hematopoietic stem/progenitor cells (HSPCs) during embryonic hematopoiesis are thought to be short-lived (SL) with limited self-renewal potential. The fate and consequence of these short-lived HSPCs, once reprogrammed into "long-lived" in a living animal body, remain unknown. Here we show that targeted expression of a dominant-negative C/ebpα (C/ebpαDN) in the primitive SL-HSPCs during zebrafish embryogenesis extends their life span, allowing them to survive to later developmental stage to colonize the definitive hematopoietic sites, where they undergo a proliferative expansion followed by erythropoietic dysplasia and embryonic lethality because of circulation congestion. Mechanistically, C/ebpαDN binds to a conserved C/EBP-binding motif in the promoter region of bmi1 gene, associated with a specific induction of bmi1 transcription in the transgenic embryos expressing C/ebpαDN. Targeted expression of Bmi1 in the SL-HSPCs recapitulates nearly all aberrant phenotypes induced by C/ebpαDN, whereas knockdown of bmi1 largely rescues these abnormalities. The results indicate that Bmi1 acts immediately downstream of C/ebpαDN to regulate the survival and self-renewal of HSPCs and contribute to the erythropoietic dysplasia.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |