例如:"lncRNA", "apoptosis", "WRKY"

Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2.

Biochemistry. 2011 Aug 02;50(30):6567-78. doi:10.1021/bi200553e. Epub 2011 Jul 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读