例如:"lncRNA", "apoptosis", "WRKY"

Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions.

Nat. Struct. Mol. Biol.2011 Jun 19;18(7):846-53
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The diverse Regulator of G protein Signaling (RGS) family sets the timing of G protein signaling. To understand how the structure of RGS proteins determines their common ability to inactivate G proteins and their selective G protein recognition, we combined structure-based energy calculations with biochemical measurements of RGS activity. We found a previously unidentified group of variable 'Modulatory' residues that reside at the periphery of the RGS domain-G protein interface and fine-tune G protein recognition. Mutations of Modulatory residues in high-activity RGS proteins impaired RGS function, whereas redesign of low-activity RGS proteins in critical Modulatory positions yielded complete gain of function. Therefore, RGS proteins combine a conserved core interface with peripheral Modulatory residues to selectively optimize G protein recognition and inactivation. Finally, we show that our approach can be extended to analyze interaction specificity across other large protein families.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读