例如:"lncRNA", "apoptosis", "WRKY"

Selective localization of collybistin at a subset of inhibitory synapses in brain circuits.

J. Comp. Neurol.2012 Jan 1;520(1):130-41. doi:10.1002/cne.22702
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Collybistin is a brain-specific guanine nucleotide exchange factor (GEF) that is crucial for the postsynaptic accumulation of gephyrin and γ-aminobutyric acid A receptors (GABA(A) Rs) at a specific subset of inhibitory synapses. Our understanding of the in vivo function of collybistin has been hampered by lack of information about the synaptic localization of this protein in brain circuits. Here we describe the subcellular localization of endogenous collybistin by using antibodies raised against distinct molecular domains that should recognize the majority of endogenous collybistin isoforms. We show that collybistin co-clusters with gephyrin and GABA(A) Rs in synaptic puncta and is recruited to postsynaptic specializations early during synapse development. Notably, collybistin is present in only a subset of gephyrin-positive synapses, with variable co-localization values in different brain regions. Moreover, collybistin co-localizes with GABA(A) Rs containing the α1, α2, or α3 subunits, arguing against a selective association with specific GABA(A) R subtypes. Surprisingly, we found that collybistin is expressed only transiently in Purkinje cells, suggesting that in these cerebellar neurons collybistin plays a selective role during the initial assembly of postsynaptic specializations. These data reveal a remarkable heterogeneity in the organization of GABAergic synapses and provide an anatomical basis for interpreting the variable effects caused by disruption of the collybistin gene in human X-linked intellectual disability and mouse knockout models.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读