例如:"lncRNA", "apoptosis", "WRKY"

Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway.

FASEB J.2011 Sep;25(9):3004-18. Epub 2011 Jun 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


WW-binding protein 2 (WBP2) has been demonstrated in different studies to be a tyrosine kinase substrate, to activate estrogen receptor α (ERα)/progesterone receptor (PR) transcription, and to play a role in breast cancer. However, the role of WBP2 tyrosine phosphorylation in regulating ERα function and breast cancer biology is unknown. Here, we established WBP2 as a tyrosine phosphorylation target of estrogen signaling via EGFR crosstalk. Using dominant-negative, constitutively active mutants, and pharmacological studies, we demonstrated that phosphorylation of WBP2 at Tyr192 and Tyr231 could be regulated by c-Src and c-Yes kinases. We further showed that abrogating WBP2 phosphorylation impaired >60% of ERα reporter activity, putatively by blocking nuclear entry of WBP2 and its interaction with ERα. Compared to vector control, overexpression of WBP2 and its phospho-mimic mutant in MCF7 cells resulted in larger tumors in mice, induced loss of cell-cell adhesion, and enhanced cell proliferation, anchorage-independent growth, migration, and invasion in both estrogen-dependent and -independent manners, events of which could be substantially abolished by overexpression of the phosphorylation-defective mutant. Hormone independence of cells expressing WBP2 phospho-mimic mutant was associated with heightened ERα and Wnt reporter activities. Wnt/β-catenin inhibitor FH535 blocked phospho-WBP2-mediated cancer cell growth more pronouncedly than tamoxifen and fulvestrant, in part by reducing the expression of ERα. Wnt pathway is likely to be a critical component in WBP2-mediated breast cancer biology.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读