例如:"lncRNA", "apoptosis", "WRKY"

Epithelial junctions depend on intercellular trans-interactions between the Na,K-ATPase β₁ subunits.

J Biol Chem. 2011 Jul 22;286(29):25801-12. Epub 2011 Jun 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


N-Glycans of the Na,K-ATPase β₁ subunit are important for intercellular adhesion in epithelia, suggesting that epithelial junctions depend on N-glycan-mediated interactions between the β₁ subunits of neighboring cells. The level of co-immunoprecipitation of the endogenous β₁ subunit with various YFP-linked β₁ subunits expressed in Madin-Darby canine kidney cells was used to assess β₁-β₁ interactions. The amount of co-precipitated endogenous dog β₁ was greater with dog YFP-β₁ than with rat YFP-β₁, showing that amino acid-mediated interactions are important for β₁-β₁ binding. Co-precipitation of β₁ was also less with the unglycosylated YFP-β₁ than with glycosylated YFP-β₁, indicating a role for N-glycans. Mixing cells expressing dog YFP-β₁ with non-transfected cells increased the amount of co-precipitated β₁, confirming the presence of intercellular (YFP-β₁)-β₁ complexes. Accordingly, disruption of intercellular junctions decreased the amount of co-precipitated β₁ subunits. The decrease in β₁ co-precipitation both with rat YFP-β₁ and unglycosylated YFP-β₁ was associated with decreased detergent stability of junctional proteins and increased paracellular permeability. Reducing N-glycan branching by specific inhibitors increased (YFP-β₁)-β₁ co-precipitation and strengthened intercellular junctions. Therefore, interactions between the β₁ subunits of neighboring cells maintain integrity of intercellular junctions, and alterations in the β₁ subunit N-glycan structure can regulate stability and tightness of intercellular junctions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读