例如:"lncRNA", "apoptosis", "WRKY"

Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis.

Mol Microbiol. 2011 Jul;81(1):23-39. doi:10.1111/j.1365-2958.2011.07695.x. Epub 2011 Jun 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Transformable (competent) cells of Bacillus subtilis are blocked in cell division because the traffic ATPase ComGA prevents the formation of FtsZ rings. Although ComGA-deficient cells elongate and form FtsZ rings, cell division remains blocked at a later stage and the cells become mildly filamented. Here we show that the highly conserved protein Maf is synthesized predominantly in competent cells under the direct control of the transcription factor ComK and is solely responsible for the later block in cell division. In vivo and in vitro data show that Maf binds to both ComGA and DivIVA. A point mutation in maf that interferes with Maf binding to DivIVA also interferes with the ability of Maf to inhibit cell division. Based on these findings, we propose that Maf and ComGA mediate mechanisms for the inhibition of cell division in competent cells with Maf acting downstream of ComGA. We further suggest that Maf must interact with DivIVA to inhibit cell division. © 2011 Blackwell Publishing Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读