例如:"lncRNA", "apoptosis", "WRKY"

Dual role for Drosophila lethal of scute in CNS midline precursor formation and dopaminergic neuron and motoneuron cell fate.

Development. 2011 Jun;138(11):2171-83
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读