例如:"lncRNA", "apoptosis", "WRKY"

Roles of the 5'-phosphate sensor domain in RNase E.

Mol. Microbiol.2011 Jun;80(6):1613-24. doi:10.1111/j.1365-2958.2011.07670.x. Epub 2011 May 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Viable mutations affecting the 5'-phosphate sensor of RNase E, including R169Q or T170A, become lethal when combined with deletions removing part of the non-catalytic C-terminal domain of RNase E. The phosphate sensor is required for efficient autoregulation of RNase E synthesis as RNase E R169Q is strongly overexpressed with accumulation of proteolytic fragments. In addition, mutation of the phosphate sensor stabilizes the rpsT P1 mRNA as much as sixfold and slows the maturation of 16S rRNA. In contrast, the decay of other model mRNAs and the processing of several tRNA precursors are unaffected by mutations in the phosphate sensor. Our data point to the existence of overlapping mechanisms of substrate recognition by RNase E, which lead to a hierarchy of efficiencies with which its RNA targets are attacked.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读