例如:"lncRNA", "apoptosis", "WRKY"

Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis.

Plant Physiol.2011 Jun;156(2):844-55. Epub 2011 Apr 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Although calcium (Ca) concentration in cellular compartments has been suggested to be tightly regulated, Ca deficiency disorders such as blossom-end rot (BER) in tomato (Solanum lycopersicum) fruit may be induced by abnormal regulation of Ca partitioning and distribution in the cell. The objectives of this work were to analyze the effects of high expression of the constitutively functional Arabidopsis (Arabidopsis thaliana) Ca(2+)/H(+) exchanger (sCAX1) tonoplast protein in tomato fruit on cellular Ca partitioning and distribution, membrane integrity, and the transcriptional profile of genes potentially involved in BER development. Wild-type and sCAX1-expressing tomato plants were grown in a greenhouse. Wild-type plants did not develop BER, whereas sCAX1-expressing plants reached 100% BER incidence at 15 d after pollination. The sCAX1-expressing fruit pericarp had higher total tissue and water-soluble Ca concentrations, lower apoplastic and cytosolic Ca concentrations, higher membrane leakage, and Ca accumulation in the vacuole of sCAX1-expressing cells. Microarray analysis of healthy sCAX1-expressing fruit tissue indicated down-regulation of genes potentially involved in BER development, such as genes involved in membrane structure and repair and cytoskeleton metabolism, as well as up-regulation of genes that may have limited BER damage expansion, such as genes coding for heat shock proteins, glutathione S-transferases, and peroxidases. The results indicate that the high expression of the sCAX1 gene reduces cytosolic and apoplastic Ca concentrations, affecting plasma membrane structure and leading to BER symptom development in the fruit tissue.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读