例如:"lncRNA", "apoptosis", "WRKY"

Calcium homeostasis and transport are affected by disruption of cta3, a novel gene encoding Ca2(+)-ATPase in Schizosaccharomyces pombe.

J Biol Chem. 1990 Oct 25;265(30):18400-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A new P-type ATPase gene, cta3, has been identified in Schizosaccharomyces pombe. The deduced amino acid sequence presents a 45% identity with the Saccharomyces cerevisiae putative Ca2(+)-ATPase encoded by the PMR2 gene. The cta3 protein contains 7 out of the 8 amino acid residues involved in high affinity Ca2+ binding in the sarcoplasmic reticulum Ca2(+)-ATPase from muscles. It also contains a region similar to the phospholamban-binding domain that characterizes this Ca2+ pump. A null mutation of cta3 leads to higher levels of cytosolic free Ca2+ and to lower amounts of sequestered and bound Ca2+. Cellular Ca2+ efflux and rates of uptake into intracellular compartments are reduced by the loss of cta3 function. The sequence analysis and the physiological results strongly support the conclusion that the cta3 gene encodes a Ca2(+)-ATPase, probably located in intracellular membranes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读