例如:"lncRNA", "apoptosis", "WRKY"

AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV.

Plant J.2011 Jun;66(6):983-95. doi:10.1111/j.1365-313X.2011.04558.x. Epub 2011 Apr 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Arabidopsis thaliana contains 18 genes encoding Hsp70s. This heat shock protein superfamily is divided into two sub-families: DnaK and Hsp110/SSE. In order to functionally characterize members of the Hsp70 superfamily, loss-of-function mutants with reduced cytosolic Hsp70 expression were studied. AtHsp70-1 and AtHsp70-2 are constitutively expressed and represent the major cytosolic Hsp70 isoforms under ambient conditions. Analysis of single and double mutants did not reveal any difference compared to wild-type controls. In yeast, SSE protein has been shown to act as a nucleotide exchange factor, essential for Hsp70 function. To test whether members of the Hsp110/SSE sub-family serve essential functions in plants, two members of the sub-family, AtHsp70-14 and AtHsp70-15, were analysed. Both genes are highly homologous and constitutively expressed. Deficiency of AtHsp70-15 but not of AtHsp70-14 led to severe growth retardation. AtHsp70-15-deficient plants were smaller than wild-type and exhibited a slightly different leaf shape. Stomatal closure under ambient conditions and in response to ABA was impaired in the AtHsp70-15 transgenic plants, but ABA-dependent inhibition of germination was not affected. Heat treatment of AtHsp70-15-deficient plants resulted in drastically increased mortality, indicating that AtHsp70-15 plays an essential role during normal growth and in the heat response of Arabidopsis plants. AtHsp70-15-deficient plants are more tolerant to infection by turnip mosaic virus. Comparative transcriptome analysis revealed that AtHsp70-15-deficient plants display a constitutive stress response similar to the cytosolic protein response. Based on these results, AtHsp70-15 is likely to be a key factor in proper folding of cytosolic proteins, and may function as nucleotide exchange factor as proposed for yeast.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读