[No authors listed]
Accumulation of lipids inside the cell is primarily caused by disorders of lipid metabolism. S-adenosylmethionine synthetase (SAMS) produces SAM, an important methyl donor in various phospholipid methyltransferase reactions catalysed by phosphoethanolamine N-methyltransferase (PMT-1). A gel-based, quantitative proteomic analysis of the RNA interference inactivation of the pod-2 gene, which encodes acetyl-CoA carboxylase, showed a substantial down-regulation of SAMS-1. Consequently, of either sams-1 or pmt-1 caused a significant increase in lipid droplet size in the intestine of Caenorhabditis elegans. Lipid droplets exhibited increased triacylglycerol (TG) and decreased phosphatidylcholine (PC) levels, suggesting a reciprocal relationship between TG and PC regulation. These lipid-associated phenotypes were rescued by choline feeding. Among the five fat metabolism-related genes examined, two genes were highly induced by inactivation of sams-1 or pmt-1: pod-2 and stearoyl-CoA desaturase (fat-7). Thus, both SAMS-1 and PMT-1 were shown to contribute to the homoeostasis of TG and PC levels in C. elegans, which would provide an important survival strategy under harsh environmental conditions.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |