[No authors listed]
Bacterial nitric-oxide synthase (NOS)-like proteins are believed to be genuine NOSs. As for cytochromes P450 (CYPs), NOS-proximal ligand is a thiolate that exerts a push effect crucial for the process of dioxygen activation. Unlike CYPs, this catalytic electron donation seems controlled by a hydrogen bond (H-bond) interaction between the thiolate ligand and a vicinal tryptophan. Variations of the strength of this H-bond could provide a direct way to tune the stability along with the electronic and structural properties of NOS. We generated five different mutations of bsNOS Trp66, which can modulate this proximal H-bond. We investigated the effects of these mutations on different NOS complexes (FeIII, FeIICO, and FeIINO), using a combination of UV-visible absorption, EPR, FTIR, and resonance Raman spectroscopies. Our results indicate that (i) the proximal H-bond modulation can selectively decrease or increase the electron donating properties of the proximal thiolate, (ii) this modulation controls the Ï-competition between distal and proximal ligands, (iii) this H-bond controls the stability of various NOS intermediates, and (iv) a fine tuning of the electron donation by the proximal ligand is required to allow at the same time oxygen activation and to prevent uncoupling reactions.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |