例如:"lncRNA", "apoptosis", "WRKY"

Maintenance and regulation of extracellular volume and the ion environment in Drosophila larval nerves.

Glia. 2011 Sep;59(9):1312-21. doi:10.1002/glia.21132. Epub 2011 Feb 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In mammals and insects, paracellular blood barriers isolate the nervous system from the rest of the animal. Glia and accessory cells of the nervous system use pumps, channels, cotransporters, and exchangers collectively to maintain the extracellular ion environment and osmotic balance in the nervous system. At present, the molecular mechanisms that regulate this process remain unclear. In humans, loss of extracellular ion and volume regulation in the nervous system poses serious health threats. Drosophila is a model genetic organism with a proven track record for uncovering molecular mechanisms relevant to human health and disease. Here, we review what is known about extracellular ion and volume regulation in larval abdominal nerves, present some new data about the impact of neural activity on the extracellular environment, and relate the findings to mammalian systems. Homologies have been found at the level of morphology, physiology, molecular mechanisms, and mutant phenotypes. The Fray-Ncc69 module regulates extracellular volume in larval nerves. Genetic rescue experiments with the mammalian orthologs prove this module has a direct correlate in humans. This and other molecular homologies, together with the similar physiological needs, suggest that uncovering the molecular mechanisms of ion and volume regulation in larval nerves will likely provide significant insights into this process in mammalian systems. Copyright © 2011 Wiley-Liss, Inc.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读