例如:"lncRNA", "apoptosis", "WRKY"

Bio-electrospraying and aerodynamically assisted bio-jetting the model eukaryotic Dictyostelium discoideum: assessing stress and developmental competency post treatment.

J R Soc Interface. 2011 Aug 07;8(61):1185-91. Epub 2011 Feb 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Bio-electrospraying (BES) and aerodynamically assisted bio-jetting (AABJ) have recently been established as important novel biospray technologies for directly manipulating living cells. To elucidate their potential in medical and clinical sciences, these bio-aerosol techniques have been subjected to increasingly rigorous investigations. In parallel to these studies, we wish to introduce these unique biotechnologies for use in the basic biological sciences, for handling a wide range of cell types and systems, thus increasing the range and the scope of these techniques for modern research. Here, the authors present the analysis of the new use of these biospray techniques for the direct handling of the simple eukaryotic biomedical model organism Dictyostelium discoideum. These cells are widely used as a model for immune cell chemotaxis and as a simple model for development. We demonstrate that AABJ of these cells did not cause cell stress, as defined by the stress-gene induction, nor affect cell development. Furthermore, although BES induced the increased expression of one stress-related gene (gapA), this was not a generalized stress response nor did it affect cell development. These data suggest that these biospray techniques can be used to directly manipulate single cells of this biomedical model without inducing a generalized stress response or perturbing later development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读