[No authors listed]
Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca(2+) flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca(2+). The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca(2+) levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca(2+) flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca(2+) flux. Acetate inhibits the Ca(2+) accumulation elicited by the ethanol/osmotic stress. The Ca(2+) flux is primarily via the Cch1 Ca(2+) influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca(2+) flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |