例如:"lncRNA", "apoptosis", "WRKY"

KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor.

Dev. Cell. 2011 Jan 18;20(1):60-71
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Kinesin-mediated membrane trafficking is a fundamental cellular process, but its developmental relevance is little understood. Here we show that the kinesin-3 motor KIF16B/Rab14 complex acts in biosynthetic Golgi-to-endosome traffic of the fibroblast growth factor receptor (FGFR) during early embryonic development. Kif16b(-/-) mouse embryos failed in developing epiblast and primitive endoderm lineages and died in the peri-implantation stage, similar to previously reported FGFR2 knockout embryos. KIF16B associated directly with the Rab14-GTP adaptor on FGFR-containing vesicles and transported them toward the plasma membrane. To examine whether the nucleotide state of Rab14 serves as a switch for transport, we performed Rab14-GDP overexpression. This dominant negative approach reproduced the whole putative sequence of KIF16B or FGFR2 deficiency: impairment in FGFR transport, FGF signaling, basement membrane assembly by the primitive endoderm lineage, and epiblast development. These data provide one of the first pieces of genetic evidence that microtubule-based membrane trafficking directly promotes early development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读