[No authors listed]
The tadpole pancreas has differentiated acinar cells but an underdeveloped ductal system. At the climax of metamorphosis thyroid hormone (TH) induces the tadpole acinar cells to dedifferentiate to a progenitor state. After metamorphosis is complete the exocrine pancreas redifferentiates in the growing frog forming a typical vertebrate pancreas including a complex ductal system. A micro array analysis found that TH up regulates stromelysin 3 (ST3, matrix metalloproteinase 11) in the exocrine pancreas at metamorphic climax. Transgenic tadpoles were prepared with an elastase promoter driving either the ST3 gene or the constitutively active form of Notch (IC). Expression of the transgenes was controlled by the tetracycline system. A few days after either of these transgenes is activated by doxycycline the pancreatic acinar cells turn into duct-like cells. This transdetermination occurs without cell division since both acinar and ductal markers can be visualized transiently in the same cell. We propose that remodeling of the tadpole acinar cells is initiated when ST3 is up regulated by TH. Stromelysin-3 then cleaves and activates Notch. Copyright © 2010 Elsevier Inc. All rights reserved.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |