例如:"lncRNA", "apoptosis", "WRKY"

Diverse functions of reactive cysteines facilitate unique biosynthetic processes of aggregate-prone interleukin-31.

Exp. Cell Res.2011 Apr 15;317(7):976-93. Epub 2010 Dec 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Interleukin-31 (IL-31) is a member of the four helical-bundle gp130/IL-6 cytokine family. Despite its implicated roles in inflammatory diseases, the biosynthetic processes of IL-31 have been poorly investigated. A detailed understanding of IL-31 biosynthesis and the nature of ligand-receptor interactions can provide insights into effective strategies for the design of therapeutic approaches. By using various heterologous protein expression systems, we demonstrated that murine IL-31 was secreted as inter-molecularly disulfide-bonded covalent aggregates. Covalently aggregated IL-31 appeared while trafficking in the secretory pathway, but was not actively retained in the ER. The aggregate formation was not caused by a dysfunctional ER quality control mechanism or an intrinsic limitation in protein folding capacity. Furthermore, secreted IL-31 aggregates were part of a large complex composed of various pleiotropic secretory factors and immune-stimulators. The extent and the heterogeneous nature of aggregates may imply that IL-31 was erroneously folded, but it was capable of signaling through cognate receptors. Mutagenesis revealed the promiscuity of all five cysteines in inter-molecular disulfide formation with components of the hetero-aggregates, but no cysteine was required for IL-31 secretion itself. Our present study not only illustrated various functions that cysteines perform during IL-31 biosynthesis and secretion, but also highlighted their potential roles in cytokine effector functions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读