例如:"lncRNA", "apoptosis", "WRKY"

Molecular evolution and characterization of fungal indoleamine 2,3-dioxygenases.

J Mol Evol. 2011 Feb;72(2):160-8. doi:10.1007/s00239-010-9412-5. Epub 2010 Dec 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide adenine dinucleotide (NAD(+)). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD(+), as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOβ. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOβ, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOβ gene, two isoforms, IDOβ and IDOβ(+) could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first intron of IDOβ gene. In comparison to IDOβ(+), bacterially expressed IDOβ showed much lower K(m) value and more than five-times faster V(max) value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from IDOβ(+) increases its enzymatic activity drastically. This might be a unique regulation mechanism of the L-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan (L-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by L-1MT.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读