例如:"lncRNA", "apoptosis", "WRKY"

Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane.

Plant J.2010 Dec;64(6):1028-37. doi:10.1111/j.1365-313X.2010.04392.x. Epub 2010 Nov 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Several proteins encoded by the cellulose synthase-like (CSL) gene family are known to be processive glycan synthases involved in the synthesis of cell-wall polysaccharides. These include CSLA proteins, which synthesize β-(1→4)-linked mannans found in the walls of many plant species, and CSLC proteins, which are thought to synthesize the β-(1→4)-linked glucan backbone of xyloglucan, an abundant polysaccharide in the primary walls of many plants. CSLA and CSLC proteins are predicted to have multiple membrane spans, and their products (mannan and xyloglucan) accumulate in the Golgi lumen. Knowing where these proteins are located in the cell and how they are orientated in the membrane is important for understanding many aspects of mannan and xyloglucan biosynthesis. In this study, we investigate the subcellular localization and membrane protein topology of CSLA9 and CSLC4, the members of these two families that are most highly expressed in Arabidopsis. CSLA9 and CSLC4 are found predominantly in Golgi membranes, based on co-localization with the known ER/Golgi marker ERD2-YFP. The topology of epitope-tagged proteins was examined using protease protection experiments. Experiments were designed to determine the positions of both the protein termini and the active loop of the CSL proteins investigated. The topology of CSLA9 is characterized by an odd number of transmembrane domains (probably five) and an active site that faces the Golgi lumen. In contrast, CSLC4 has an even number of transmembrane domains (probably six) and an active site that faces the cytosol. The implications of these topologies on various aspects of hemicellulose biosynthesis are discussed.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读