例如:"lncRNA", "apoptosis", "WRKY"

β-catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells.

Arterioscler. Thromb. Vasc. Biol.2011 Mar;31(3):590-7. Epub 2010 Dec 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:In calcific aortic valve disease, myofibroblasts and activation of the transforming growth factor-β1 (TGF-β1) and Wnt/β-catenin pathways are observed in the fibrosa, the stiffer layer of the leaflet, but their association is unknown. We elucidated the roles of β-catenin and extracellular matrix stiffness in TGF-β1-induced myofibroblast differentiation of valve interstitial cells (VICs). METHODS AND RESULTS:TGF-β1 induced rapid β-catenin nuclear translocation in primary porcine aortic VICs in vitro through TGF-β receptor I kinase. Degrading β-catenin pharmacologically or silencing it with small interfering RNA inhibited TGF-β1-induced myofibroblast differentiation without altering Smad2/3 activity. Conversely, increasing β-catenin availability with Wnt3A alone did not induce differentiation. However, combining TGF-β1 and Wnt3A caused greater myofibroblast differentiation than TGF-β1 treatment alone. Notably, in VICs grown on collagen-coated PA gels with physiological stiffnesses, TGF-β1-induced β-catenin nuclear translocation and myofibroblast differentiation occurred only on matrices with fibrosa-like stiffness, but not ventricularis-like stiffness. In diseased aortic valves from pigs fed an atherogenic diet, myofibroblasts colocalized with increased protein expression of Wnt3A, β-catenin, TGF-β1, and phosphorylated Smad2/3 in the fibrosa. CONCLUSIONS:Myofibroblast differentiation of VICs involves matrix stiffness-dependent crosstalk between TGF-β1 and Wnt signaling pathways and may explain in part why the stiffer fibrosa is more susceptible to disease.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读