例如:"lncRNA", "apoptosis", "WRKY"

Alpha-dystrobrevin-1 recruits alpha-catulin to the alpha1D-adrenergic receptor/dystrophin-associated protein complex signalosome.

Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21854-9. Epub 2010 Nov 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


α(1D)-Adrenergic receptors (ARs) are key regulators of cardiovascular system function that increase blood pressure and promote vascular remodeling. Unfortunately, little information exists about the signaling pathways used by this important G protein-coupled receptor (GPCR). We recently discovered that α(1D)-ARs form a "signalosome" with multiple members of the dystrophin-associated protein complex (DAPC) to become functionally expressed at the plasma membrane and bind ligands. However, the molecular mechanism by which the DAPC imparts functionality to the α(1D)-AR signalosome remains a mystery. To test the hypothesis that previously unidentified molecules are recruited to the α(1D)-AR signalosome, we performed an extensive proteomic analysis on each member of the DAPC. Bioinformatic analysis of our proteomic data sets detected a common interacting protein of relatively unknown function, α-catulin. Coimmunoprecipitation and blot overlay assays indicate that α-catulin is directly recruited to the α(1D)-AR signalosome by the C-terminal domain of α-dystrobrevin-1 and not the closely related splice variant α-dystrobrevin-2. Proteomic and biochemical analysis revealed that α-catulin supersensitizes α(1D)-AR functional responses by recruiting effector molecules to the signalosome. Taken together, our study implicates α-catulin as a unique regulator of GPCR signaling and represents a unique expansion of the intricate and continually evolving array of GPCR signaling networks.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读