[No authors listed]
The Arabidopsis ankyrin-repeat containing protein 2A (AKR2A) was shown to be an essential molecular chaperone for the peroxisomal membrane-bound ascorbate peroxidase 3 (APX3), because the biogenesis of APX3 depends on the function of AKR2A in plant cells. AKR2A binds specifically to a sequence in APX3 that is made up of a transmembrane domain followed by a few positively charged amino acid residues; this sequence is named as AKR2A-binding sequence or ABS. Interestingly, a sequence in the chloroplast outer envelope protein 7 (OEP7) shares similar features to ABS and is able to bind specifically to AKR2A, suggesting a possibility that proteins with a sequence similar to ABS could bind to AKR2A and they are all likely ligand proteins of AKR2A. This hypothesis was supported by analyzing 5 additional proteins that contain sequences similar to ABS using the yeast two-hybrid technique. A preliminary survey in the Arabidopsis genome indicates that there are at least 500 genes encoding proteins that contain sequences similar to ABS, which raises interesting questions: are these proteins AKR2A's ligand proteins and does AKR2A play a critical role in the biogenesis of these proteins in plants?
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |