例如:"lncRNA", "apoptosis", "WRKY"

Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation.

J Biol Chem. 2010 Dec 31;285(53):42058-67. Epub 2010 Oct 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


ATP hydrolysis-dependent rotation of the F(1) sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under V(max) conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401-22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5'-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 μM) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F(1) requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ε subunit, the inhibitor of F(1)-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ε subunit has little effect on the transition between active and inhibited states. Rather, the ε subunit confers lower activation energy of steady-state rotation. These results suggest that the ε subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读