例如:"lncRNA", "apoptosis", "WRKY"

Effect of denervation-induced muscle disuse on mitochondrial protein import.

Am J Physiol Cell Physiol. 2011 Jan;300(1):C138-45. Epub 2010 Oct 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


This study determined whether muscle disuse affects mitochondrial protein import and whether changes in protein import are related to mitochondrial content and function. Protein import was measured using a model of unilateral peroneal nerve denervation in rats for 3 (n = 10), 7 (n = 12), or 14 (n = 14) days. We compared the import of preproteins into the matrix of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria isolated from the denervated and the contralateral control tibialis anterior muscles. Denervation led to 50% and 29% reductions in protein import after 14 days of disuse in SS and IMF mitochondria, respectively. This was accompanied by significant decreases in mitochondrial state 3 respiration, muscle mass, and whole muscle cytochrome c oxidase activity. To investigate the mechanisms involved, we assessed disuse-related changes in 1) protein import machinery components and 2) mitochondrial function, reflected by respiration and reactive oxygen species production. Denervation significantly reduced the expression of translocases localized in the inner membrane (Tim23), outer membrane (Tom20), and mitochondrial heat shock protein 70 (mtHsp70), especially in the SS subfraction. Denervation also resulted in elevated generation, and exogenous duanyu1670 was found to markedly reduce protein import. Thus our data indicate that protein import kinetics are closely related to alterations in mitochondrial respiratory capacity (r = 0.95) and are negatively impacted by Deleterious changes in the protein import system likely facilitate the reduction in mitochondrial content and the increase in organelle dysfunction (i.e., increased duanyu1670 production and decreased respiration) during chronic disuse, which likely contribute to the activation of degradative pathways leading to muscle atrophy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读