例如:"lncRNA", "apoptosis", "WRKY"

Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila.

Nitric Oxide. 2011 Jan 1;24(1):17-24. Epub 2010 Oct 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nitric oxide (NO) plays an important role in learning and memory which is essential for animals to adapt to the external environment. However, little is known about the role of NO metabolism in this process. S-nitrosoglutathione reductase (GSNOR) is a key protein in the control of NO metabolism and protein S-nitrosation. To study the relationship between NO metabolism and learning and memory, the expression of gene fdh which is homolog to mammalian GSNOR was modulated by the Gal4/UAS system in Drosophila. The over-expression of the fdh in the central nervous system significantly increased GSNOR activity and induced visual pattern memory defects of Drosophila. The role of fdh in learning and memory was independent of development and was neuron-specific: over-expression of the fdh in the fan-shaped body induced memory defect, while over-expression in the mushroom body did not. The visual pattern memory defect could be rescued by co-expression with exogenous cGMP-dependent protein kinase (PKG). Moreover, fdh over-expression resulted in denitrosation of multiple proteins functionally enriched in vesicle-mediated transport, which is important for learning and memory. These results showed that regulation of NO metabolism plays an important role in learning and memory, and the mechanism may involve both NO-cGMP-PKG signaling pathway and S-nitrosation modification.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读