例如:"lncRNA", "apoptosis", "WRKY"

Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.

J. Mol. Microbiol. Biotechnol.2010;19(3):140-6. Epub 2010 Oct 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Fermentation-induced loss of stress resistance in yeast is an important phenotype from an industrial point of view. It hampers optimal use of frozen dough applications as well as high gravity brewing fermentations because these applications require stress-tolerant yeast strains during active fermentation. Different mutants (e.g. fil1, an adenylate cyclase mutant CYR1(lys1682)) that are affected in this loss of stress resistance have been isolated, but so far the identification of the target genes important for the increased tolerance has failed. Previously we have shown that neither trehalose nor Hsp104 nor STRE-controlled genes are involved in the higher stress tolerance of the fil1 mutant. The contribution of other putative downstream factors of the pathway was investigated and here we show that the small heat-shock protein Hsp26 is required for the high heat stress tolerance of the fil1 mutant, both in stationary phase cells as well as during active fermentation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读