例如:"lncRNA", "apoptosis", "WRKY"

Enhanced anorexigenic signaling in lean obesity resistant syndecan-3 null mice.

Neuroscience. 2010 Dec 29;171(4):1032-40. Epub 2010 Oct 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Obesity is associated with increased risk of diabetes, cardiovascular disease and several types of cancers. The hypothalamus is a region of the brain critical in the regulation of body weight. One of the critical and best studied hypothalamic circuits is comprised of the melanocortinergic orexigenic agouti-related protein (AgRP) and anorexigenic α-melanocyte stimulating hormone (α-MSH) neurons. These neurons project axons to the same hypothalamic target neurons and balance each other's activity leading to body weight regulation. We previously showed that the brain proteoglycan syndecan-3 regulates feeding behavior and body weight, and syndecan-3 null (SDC-3(-/-)) mice are lean and obesity resistant. Here we show that the melanocortin agonist Melanotan II (MTII) potently suppresses food intake and activates the hypothalamic paraventricular nuclei (PVN) in SDC-3(-/-) mice based on c-fos immunoreactivity. Interestingly, we determined that the AgRP neuropeptide is reduced in the PVN of SDC-3(-/-) mice compared to wild type mice. In contrast, neuropeptide Y, coexpressed in the AgRP neuron, is not differentially expressed nor is the counteracting neuropeptide α-MSH. These findings are unprecedented and indicate that AgRP protein localization can be selectively regulated within the hypothalamus resulting in altered neuropeptide response and tone. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读