例如:"lncRNA", "apoptosis", "WRKY"

Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning.

J Biol Chem. 2010 Nov 26;285(48):37281-92. Epub 2010 Sep 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读