例如:"lncRNA", "apoptosis", "WRKY"

Contrasting vascular effects caused by loss of Bardet-Biedl syndrome genes.

Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1902-7. Epub 2010 Sep 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, autosomal-recessive disorder associated with several clinical features including obesity, hypertension, and cardiovascular abnormalities. BBS proteins play an important role in the function of cilia, a mechanosensory organelle in endothelial cells, but whether these proteins are directly involved in the regulation of vascular function is unclear. Here, we show that Bbs genes (1-12) are expressed in endothelial and smooth muscle cell lines and tissues enriched in endothelial (lung) and smooth muscle (stomach) cells as well as the aorta. Next, we used aortic rings to examine the vascular function of two BBS mouse models that recapitulate the human phenotype, namely Bbs2(-/-) (obese and normotensive) and Bbs6(-/-) (obese and hypertensive) mice. Interestingly, the endothelium-dependent relaxation (induced by ACh) was significantly enhanced in Bbs2(-/-) but not Bbs6(-/-) mice. In contrast, the endothelium-independent relaxation (induced by sodium nitroprusside) was unaltered in both BBS mouse models. In addition, the contractile responses to serotonin and endothelin-1 were attenuated in Bbs2(-/-) but not Bbs6(-/-) mice. Of note, the NO-producing enzymes (eNOS and iNOS) were upregulated in the aorta of Bbs2(-/-) but not Bbs6(-/-) mice. On the other hand, the expression level of membrane subunits of NADPH oxidase (p22(phox) and p47(phox)) in the aorta was decreased in Bbs2(-/-) mice but increased in Bbs6(-/-) mice. In conclusion, these data implicate Bbs genes in the regulation of vascular function and demonstrate that disrupting Bbs2 and Bbs6 genes affect differentially the vascular function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读