例如:"lncRNA", "apoptosis", "WRKY"

The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis.

Dev. Cell. 2010 Aug 17;19(2):284-95
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cytokinins affect plant immunity to various pathogens; however, the mechanisms coupling plant-derived cytokinins to pathogen responses have been elusive. Here, we found that plant-derived cytokinins promote resistance of Arabidopsis to Pseudomonas syringae pv. tomato DC3000 (Pst). Modulated cytokinin levels or signaling activity in CKX- or IPT-overexpressing plants or in ahk2 ahk3 mutants correlated with altered resistance. In fact, the cytokinin-activated transcription factor ARR2 contributes specifically to Pst resistance. The salicylic acid (SA) response factor TGA3 binds ARR2, and mutation of TGA-binding cis-elements in the Pr1 promoter abolished cytokinin- and ARR2-dependent Pr1 activation. Cytokinin treatment did not increase pathogen resistance in tga3 plants, as the cytokinin-dependent induction of Pr1 was eliminated. Moreover, SA signaling enhanced binding of ARR2/TGA3 to the Pr1 promoter. Taken together, these results show that cytokinins modulate the SA signaling to augment resistance against Pst, a process in which the interaction between TGA3 and ARR2 is important.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读