[No authors listed]
The BK channel, a voltage- and Ca(2+)-gated large-conductance potassium channel with many important functions, is often localized at specific subcellular domains. Although proper subcellular localization is likely a prerequisite for the channel to perform its physiological functions, little is known about the molecular basis of localization. Here, we show that CTN-1, a homologue of mammalian α-catulin, is required for subcellular localization of SLO-1, the Caenorhabditis elegans BK channel α-subunit, in body-wall muscle cells. CTN-1 was identified in a genetic screen for mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of SLO-1. In body-wall muscle cells, CTN-1 coclusters with SLO-1 at regions of dense bodies, which are Z-disk analogs of mammalian skeletal muscle. In ctn-1 loss-of-function (lf) mutants, SLO-1 was mislocalized in body-wall muscle but its transcription and protein level were unchanged. Targeted rescue of ctn-1(lf) in muscle was sufficient to reinstate the lethargic phenotype in slo-1(gf);ctn-1(lf). These results suggest that CTN-1 plays an important role in BK channel function by mediating channel subcellular localization.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |