例如:"lncRNA", "apoptosis", "WRKY"

The NH(2)-terminus of K(+)-Cl(-) cotransporter 3a is essential for up-regulation of Na(+),K(+)-ATPase activity.

Biochem. Biophys. Res. Commun.2010 Sep 3;399(4):683-7. Epub 2010 Aug 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


K(+)-Cl(-) cotransporter-3 has two major amino terminal variants, KCC3a and KCC3b. In LLC-PK1 cells, exogenously expressed KCC3a co-immunoprecipitated with endogenous Na(+),K(+)-ATPase alpha1-subunit (alpha1NaK), accompanying significant increases of the Na(+),K(+)-ATPase activity. Exogenously expressed KCC3b did not co-immunoprecipitate with endogenous alpha1NaK inducing no change of the Na(+),K(+)-ATPase activity. A KCC inhibitor attenuated the Na(+),K(+)-ATPase activity in rat gastric mucosa in which KCC3a is predominantly expressed, while it had no effects on the Na(+),K(+)-ATPase activity in rat kidney in which KCC3b is predominantly expressed. In these tissue samples, KCC3a co-immunoprecipitated with alpha1NaK, while KCC3b did not. Our results suggest that the NH(2)-terminus of KCC3a is a key region for association with alpha1NaK, and that KCC3a but not KCC3b can regulate the Na(+),K(+)-ATPase activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读