例如:"lncRNA", "apoptosis", "WRKY"

Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis.

Pediatrics. 2010 Aug;126(2):e391-400. Epub 2010 Jul 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:We describe the first cohort-based analysis of the impact of genetic disorders in craniosynostosis. We aimed to refine the understanding of prognoses and pathogenesis and to provide rational criteria for clinical genetic testing. METHODS:We undertook targeted molecular genetic and cytogenetic testing for 326 children who required surgery because of craniosynostosis, were born in 1993-2002, presented to a single craniofacial unit, and were monitored until the end of 2007. RESULTS:Eighty-four children (and 64 relatives) had pathologic genetic alterations (86% single-gene mutations and 14% chromosomal abnormalities). The FGFR3 P250R mutation was the single largest contributor (24%) to the genetic group. Genetic diagnoses accounted for 21% of all craniosynostosis cases and were associated with increased rates of many complications. Children with an initial clinical diagnosis of nonsyndromic craniosynostosis were more likely to have a causative mutation if the synostoses were unicoronal or bicoronal (10 of 48 cases) than if they were sagittal or metopic (0 of 55 cases; P = .0003). Repeat craniofacial surgery was required for 58% of children with single-gene mutations but only 17% of those with chromosomal abnormalities (P = .01). CONCLUSIONS:Clinical genetic assessment is critical for the treatment of children with craniosynostosis. Genetic testing of nonsyndromic cases (at least for FGFR3 P250R and FGFR2 exons IIIa/c) should be targeted to patients with coronal or multisuture synostoses. Single-gene disorders that disrupt physiologic signaling in the cranial sutures often require reoperation, whereas chromosomal abnormalities follow a more-indolent course, which suggests a different, secondary origin of the associated craniosynostosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读