例如:"lncRNA", "apoptosis", "WRKY"

Specific regulation of JNK signalling by the novel rat MKK7gamma1 isoform.

Cell. Signal.2010 Nov;22(11):1761-72. Epub 2010 Jul 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The c-Jun N-terminal kinases (JNKs) mediate a diversity of physiological and pathophysiological effects. Apart from isoform-specific JNK activation, upstream kinases are supposed to be the relevant regulators, which are involved in the context- and signalosome-depending functions. In the present study we report the cloning and characterization of the novel rat MKK7gamma1, a splice variant of MKK7 with an additional exon in the N-terminal region, in the neuronal pheochromocytoma cell line PC12. Transfected MKK7gamma1 increased basal JNK activity, in particular phosphorylation of JNK2. Consequently, JNK signalling was changed in mRNA-, protein- and activation-levels of JNK targets, such as transcription factors (c-Jun, p53, c-Myc), cell cycle regulators (p21, CyclinD1) and apoptotic proteins (Fas, Bim, Bcl-2, Bcl-xl). These alterations promote the sensitivity of MKK7gamma1-transfected cells towards cell death and repress cell proliferation under normal cell growth conditions. Complexes of JIP-1, MKK7 and JNK2 were the major JNK signalosomes under basal conditions. After stimulation with taxol (5muM) and tunicamycin (1.4mug/ml), MKK7gamma1- but not MKK7beta1-transfection, reduced cell death and even increased cell proliferation. Cellular stress also led to an increased phosphorylation of JNK1 and the almost complete abrogation of complexes of JIP-1, MKK7 and JNK2 in MKK7gamma1-transfected PC12 cells. Summarizing, MKK7gamma1 affects the function and activity of individual JNK isoforms and the formation of their signalosomes. This study demonstrates for the first time that one splice-variant of MKK7 tightly controls JNK signalling and effectively adapts JNK functions to the cellular context.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读