例如:"lncRNA", "apoptosis", "WRKY"

Association of neuropeptide W, but not obestatin, with energy intake and endocrine status in Zucker rats. A new player in long-term stress-feeding interactions.

Appetite. 2010 Oct;55(2):319-24. Epub 2010 Jul 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The aim of this study was to ascertain the roles of neuropeptide W (NPW) and obestatin in feeding and endocrine regulations and their interactions with leptin, corticosterone, and insulin, three key hormones involved in metabolic homeostasis. Plasma variations were measured in obese hyperphagic Zucker rats either following a one-day fast, or after chronic food restriction (one-third less food than normal for three weeks). Obestatin did not vary by feeding condition, and did not differ between lean and obese rats; it likely does not play any role in feeding regulation. NPW did not vary with one-day fasting, but was higher in obese rats than in lean rats under satiated (+38%) and fasting (+44%; P<0.01) conditions. In chronically food-restricted obese rats that lost about 10% of their initial body weight, NPW decreased by 18% (P<0.02), in parallel with a similar decrease in plasma insulin (P<0.03), and a 10% decrease of plasma leptin (P<0.001). Corticosterone levels in obese rats were much higher than in lean rats, and increased (P<0.0001) after chronic food restriction, but not after a short fast. Prolonged food restriction was therefore stressful for obese rats. Long-term food shortage associated with insulin, leptin and corticosterone changes is then a critical factor for the regulation of NPW. The NPW up-regulation in hyperphagic conditions and its down-regulation in hypophagic conditions, is compatible with an anorexigenic role of this peptide. NPW thus may be one of the regulatory factors involved in the complex long-term interactions between stress and feeding.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读