例如:"lncRNA", "apoptosis", "WRKY"

Osteoclast inhibitory peptide-1 binding to the Fc gammaRIIB inhibits osteoclast differentiation.

Endocrinology. 2010 Sep;151(9):4389-99. Epub 2010 Jul 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Osteoclast inhibitory peptide-1 (OIP) is an autocrine/paracrine inhibitor of osteoclast differentiation, and mice that overexpress OIP-1 in osteoclast lineage cells develop an osteopetrosis bone phenotype. In this study, we show that OIP-1 binding to the Fc gamma receptor IIB (Fc gammaRIIB) inhibits osteoclast differentiation. Confocal microscopy revealed colocalization of OIP-1 with Fc gammaRIIB in osteoclasts, and we observed that OIP-1 carboxy-terminal GPI-linked peptide forms a 1:1 complex with recombinant Fc gammaRIIB protein with an affinity binding of a dissociation constant of approximately 4 microm. Immunoreceptor tyrosine-based activation motif (ITAM)-bearing adapter proteins (FcR gamma and DNAX-activating protein of molecular mass 12 kDa) are critical for osteoclast development, and OIP-1 transgenic mouse-derived preosteoclast cells demonstrated suppression (6-fold) of ITAM phosphorylation of FcR gamma but not DNAX-activating protein of molecular mass 12 kDa. Interestingly, these preosteoclast cells demonstrated increased levels (4-fold) of immunoreceptor tyrosine-based inhibitory motif phosphorylation of Fc gammaRIIB and Src homology 2-domain-containing proteins tyrosine phosphatase 1 activation. Further, OIP-1 mouse-derived preosteoclasts cells demonstrated inhibition of spleen tyrosine kinase activation (4.5-fold), compared with wild-type mice. These results suggest that cross-regulation of immunoreceptor tyrosine-based inhibitory motif and ITAM bearing Fc receptors may play a role in OIP-1 suppression of spleen tyrosine kinase activation and inhibition of osteoclast differentiation. Thus, OIP-1 is an important physiologic regulator of osteoclast development and may have therapeutic utility for bone diseases with high bone turnover.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读