例如:"lncRNA", "apoptosis", "WRKY"

A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2.

J Biol Chem. 2010 Sep 17;285(38):29286-94. Epub 2010 Jul 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Reactive oxygen species are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca(2+) and K(+) channels of plants are known to be affected, virtually nothing is known of the targets for at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K(+) channel of Arabidopsis thaliana is essential for channel sensitivity to the duanyu1670 H(2)O(2). We show that H(2)O(2) rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H(2)O(2) and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H(2)O(2)-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys(168) located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H(2)O(2). The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys(168) as a critical target for H(2)O(2), and implicate control of the K(+) channel in regulating mineral nutrient partitioning within the plant.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读