例如:"lncRNA", "apoptosis", "WRKY"

Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian D-aspartate oxidase.

Amino Acids. 2011 Feb;40(2):467-76. doi:10.1007/s00726-010-0658-4. Epub 2010 Jun 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


D-aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. Unlike DAO, which acts on several neutral and basic D-amino acids, DDO is highly specific for acidic D-amino acids. Based on molecular modeling and simulated annealing docking analyses, a recombinant mouse DDO carrying two substitutions (Arg-216 to Leu and Arg-237 to Tyr) was generated (R216L-R237Y variant). This variant and two previously constructed single-point mutants of mouse DDO (R216L and R237Y variants) were characterized to investigate the role of Arg-216 and Arg-237 in the substrate specificity of mouse DDO. The R216L-R237Y and R216L variants acquired a broad specificity for several neutral and basic D-amino acids, and showed a considerable decrease in activity against acidic D-amino acids. The R237Y variant, however, did not show any additional specificity for neutral or basic D-amino acids and its activity against acidic D-amino acids was greatly reduced. The kinetic properties of these variants indicated that the Arg-216 residue is important for the catalytic activity and substrate specificity of mouse DDO. However, Arg-237 is, apparently, only marginally involved in substrate recognition, but is important for catalytic activity. Notably, the substrate specificity of the R216L-R237Y variant differed significantly from that of the R216L variant, suggesting that Arg-237 has subsidiary effects on substrate specificity. Additional experiments using several DDO and DAO inhibitors also suggested the involvement of Arg-216 in the substrate specificity and catalytic activity of mouse DDO and that Arg-237 is possibly involved in substrate recognition by this enzyme. Collectively, these results indicate that Arg-216 and Arg-237 play crucial and subsidiary role(s), respectively, in the substrate specificity of mouse DDO.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读