例如:"lncRNA", "apoptosis", "WRKY"

A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors.

Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11573-8. Epub 2010 Jun 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Lithium has been the gold standard in the treatment of bipolar disorder (BPD) for 60 y. Like lithium, glycogen synthase kinase 3 (GSK-3) inhibitors display both antimanic-like and antidepressant-like effects in some animal models. However, the molecular mechanisms of both lithium and GSK-3 inhibitors remain unclear. Here we show that the GSK-3 inhibitor AR-A014418 regulated alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-induced GluR1 and GluR2 internalization via phosphorylation of kinesin light chain 2 (KLC2), the key molecule of the kinesin cargo delivery system. Specifically, AMPA stimulation triggered serine phosphorylation of KLC2 and, subsequently, the dissociation of the GluR1/KLC2 protein complex. This suggests that GSK-3 phosphorylation of KLC2 led to the dissociation of AMPA-containing vesicles from the kinesin cargo system. The peptide TAT-KLCpCDK, a specific inhibitor for KLC2 phosphorylation by GSK-3beta, reduced the formation of long-term depression. Furthermore, the TAT-KLCpCDK peptide showed antimanic-like effects similar to lithium's on amphetamine-induced hyperactivity, a frequently used animal model of mania. It also induced antidepressant-like effects in the tail suspension and forced swim tests, two commonly used animal models of depression. Taken together, the results demonstrated that KLC2 is a cellular target of GSK-3beta capable of regulating synaptic plasticity, particularly AMPA receptor trafficking, as well as mood-associated behaviors in animal models. The kinesin cargo system may provide valuable novel targets for the development of new therapeutics for mood disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读