例如:"lncRNA", "apoptosis", "WRKY"

Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase.

J Biol Chem. 2010 Jul 30;285(31):23810-7. Epub 2010 May 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNA(AA) formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读