[No authors listed]
Mutations or deletions in PARKIN/PARK2, PINK1/PARK6, and DJ-1/PARK7 lead to autosomal recessive parkinsonism. In Drosophila, deletions in parkin and pink1 result in swollen and dysfunctional mitochondria in energy-demanding tissues. The relationship between DJ-1 and mitochondria, however, remains unclear. We now report that Drosophila and mouse mutants in DJ-1 show compromised mitochondrial function with age. Flies deleted for DJ-1 manifest similar defects as pink1 and parkin mutants: male sterility, shortened lifespan, and reduced climbing ability. We further found poorly coupled mitochondria in vitro and reduced ATP levels in fly and mouse DJ-1 mutants. Surprisingly, up-regulation of DJ-1 can ameliorate pink1, but not parkin, mutants in Drosophila; cysteine C104 (analogous to C106 in human) is critical for this rescue, implicating the oxidative functions of DJ-1 in this property. These results suggest that DJ-1 is important for proper mitochondrial function and acts downstream of, or in parallel to, pink1. These findings link DJ-1, pink1, and parkin to mitochondrial integrity and provide the foundation for therapeutics that link bioenergetics and parkinsonism.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |