例如:"lncRNA", "apoptosis", "WRKY"

The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway.

Nat Immunol. 2010 Jun;11(6):487-94. Epub 2010 May 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Intracellular nucleic acid sensors detect microbial RNA and DNA and trigger the production of type I interferon. However, the cytosolic nucleic acid-sensing system remains to be fully identified. Here we show that the cytosolic nucleic acid-binding protein LRRFIP1 contributed to the production of interferon-beta (IFN-beta) induced by vesicular stomatitis virus (VSV) and Listeria monocytogenes in macrophages. LRRFIP1 bound exogenous nucleic acids and increased the expression of IFN-beta induced by both double-stranded RNA and double-stranded DNA. LRRFIP1 interacted with beta-catenin and promoted the activation of beta-catenin, which increased IFN-beta expression by binding to the C-terminal domain of the transcription factor IRF3 and recruiting the acetyltransferase p300 to the IFN-beta enhanceosome via IRF3. Therefore, LRRFIP1 and its downstream partner beta-catenin constitute another coactivator pathway for IRF3-mediated production of type I interferon.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读